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Abstract 

Using an interesting limit theorem for differences of order statistics, we 
establish a new way to estimate the parameter from an exponential 
distribution. From a small set of observations, we can create many data sets 
using these pairs of order statistics. Each data set will produce one estimator of 

.λ  We will then average all of these estimators to obtain our final estimator of 
our parameter. This technique does provide an alternative to the classic way of 
estimation while using both theory and application. 

1. Introduction 

Using the strong laws of large numbers for differences of pairs of 
adjacent order statistics, we will produce a new estimator for the 
parameter in the exponential distribution. The conclusion is both 
interesting for its theoretical value and also its application. The theory is 
nice and clean and the simulations work as well. This same technique 
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performed quite well when we observed ratio of order statistics, RROS, 
from the Pareto distribution, see [1]. 

The resampling plan is to take the original N observations and 
randomly place them into an n by m matrix. From that one matrix, we 
will obtain one statistic. We then will randomly place all N data points 
into a similar matrix and obtain another statistic. Next, we will resample 
until the average of these statistics converge. We did this dozens of times 
with various N ’s and various λ ’s and even though we resampled 10,000 
times, it turns out that the average converged every time around 4,000 
resamples. Using a basic PC this only took two to three seconds. We can 
also remove one observation at a time, and obtain all matrices associated 
with these 1−N  observations. Next, we can toss out two of the original 
observations or three and obtain many estimators of our parameter. 
Averaging the statistics obtained from each of these matrices will give us 
an excellent estimator of our parameter. One can clearly see that our 
original data can be reassigned many ways. 

This estimator is a reasonable competitor to the classic MLE 
estimator. It wins about half the time. It not only predicts ,λ  but it also 

detects if the underlying distribution is not exponential or even 
continuous. If the differences of the data is not spread out sufficiently, 
then our statistic will be near zero, which means that the underlying 

distribution is degenerate, since λ~  is near zero. On the other hand, if one 
uses the MLE, i.e., the sample mean, it will just average the data and 
estimate λ  as this average. Hence, it will not detect any aberration from 
the continuous exponential distribution like our RDOS estimator does. 

2. Exponential Distribution 

The underlying density is ( ) ( ) ( ),01 ≥λ= λ− xIexf x  where .0>λ  

Our goal is to estimate the parameter λ  by using pairs of order statistics 
and resampling the original data to make our estimator robust. 
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The joint density of the original i.i.d. random variables mXX ,,1 …  is 

( ) ( ) ( ).001,, 11 1 ≥≥
λ

= λ=∑−
m

x
mm xIxIexxf i

m
i "…  

Hence the density of the corresponding order statistics ( ) ( )mXX ,,1 …  is 

( ( ) ( ) )
( ) ( ( ) ( ) ( ) ).0!,, 211 1 m
x

mm xxxIemxxf i
m
i ≤≤≤≤

λ
= λ=∑− "…  

Next we obtain the joint density of ( ) ,,,, 111 −mDDX …  where 

( ) ( )iii XXD −= +1  and we let ( ).1XW =  In order to do that we need the 

inverse transformations, which are 

( ) ,1 WX =  

( ) ,12 DWX +=  

( ) ,213 DDWX ++=  

through 

( ) .
1

1
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m

i
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=
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So, in order to obtain this density we need the Jacobian, which is the 
determinant of the matrix 
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which is the lower triangular matrix 
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Thus the Jacobian is 1. So, the joint density of ( ) 111 ,,, −mDDX …  is 

( ( ) ) [ ( ) ( ) ( ) ( ) ] ,!,,, 13211 321
111

λ++−+−+−+−
−

−

λ
= mddmdmdmmx

mm emddxf "…  

where each of these random variables have support on [ ).,0 ∞  This shows 

that the random variables ( ) 111 ,,, −mDDX …  are independent and that 

the density of iD  is 

( ) ( ) ( ) ( ).0≥
λ
−= λ−−

i
dim

iD dIeimdf i
i  

Hence these random variables are independent exponentials with mean 
( ).im −λ  This means that a natural estimator of λ  is ( ).imDi −  Next, 

we will average over 1,,1 −= mi …  to obtain a better estimate of our 

parameter. Finally, by resampling the original data repeatedly, our final 
statistic is a very robust estimate of .λ  

3. Application 

As we did with the Pareto random variables, see [1], we take a 
sample of size N and fill an n by m matrix with these observations from 
our exponential distribution. We can pick any n and m as long as 

Nnm ≤  and we can do that by tossing aside a few observations for each 
matrix we generate. With this n by m matrix of i.i.d. exponential random 



RESAMPLING DIFFERENCES OF ORDER STATISTICS … 113

variables, we first order the elements within each row. That creates the 
order statistics, then we take the differences between columns. Thus, we 
have the difference of adjacent order statistics within each row. That 
creates a new n by 1−m  matrix, with element .jiD  Since ( )jiDE  

( ),im −λ=  by summing over both rows and columns of our matrix of 

differences of adjacent order statistics, we have as a natural estimator of 
λ  

( )

( ) ,1
ˆ

1

11
−

−
=λ

∑∑ −

==

mn

imDji
m

i

n

j  

for this one matrix. Where, once again jiD  is the i-th difference of 

adjacent order statistics within the j-th row. Next, we repeat this over 
and over again by taking the original N random variables and obtaining 

a new λ̂  for each resampled matrix. 

We continue in this fashion by resampling 1−N  exponential random 
variables by tossing out one of the original observations. Each time we 
place these 1−N  values in a matrix, we obtain another estimator of .λ  
We can then toss out two of our N observations. This creates a huge 
collection of possible estimators of .λ  Next, we average over all of these 

λ̂ ’s to obtain our final estimator, .~λ  The strong law of large numbers 
forces this to be an excellent and of course consistent estimator of .λ  

As with the RROS estimator in [1], our RDOS estimator wins about 
half the time. Running simulations using R with various N ’s and various 
λ ’s, we noticed that after about 4,000 resamples the RDOS estimator 
stabilized every single time. These simulations only take about two to 
three seconds on a basic PC. This proves that this is an estimator who’s 
time has come. With the use of any sophisticated machine, these type of 
estimators will be immediate. 
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In the table we show what happened, when we set .7=λ  We generated 
30=N  i.i.d. exponential random variables using R. The sample mean 

was 6.679467 and λ~  was 6.824357. What one can see is that λ~  does 
converge very quickly. In that setting, we had 6 columns and 5 rows for 
our 30=N  observations. Using these 6 by 5 matrices, our statistics 
converged very quickly, so we did not need to toss out any of the original 
30 values and resample any further. However, we can toss out any 2 of 
the 30 original random variables and form all 4 by 7 and then all 7 by 4 

matrices. With ( )30
2  equal to 435, we see that we can create 435 new data 

sets with this type of resampling. And we can toss out any 3 of the 30, 
which has 4060 ways of being done. Then with those 27 observations, we 
can form all possible 3 by 9 and all possible 9 by 3 matrices. The 
possibilities are endless. In the end, we will use the strong law of large 

numbers and average over all of these statistics to obtain our .~λ  

We only need a few lines of programming in R to obtain .~λ  We start 
by letting R generate N uniform random variables, U, and by setting 

,lnUY λ−=  we have our exponential random variables with mean .λ  

Since the program in R was only a few lines long, it would be very easy to 
incorporate these types of estimators into existing software. Some day 
these RDOS and RROS estimators should be included in all of these 
computer packages that statisticians use to estimate parameters. They 
are an interesting alternative to our classic estimators. What’s quite nice 
about them, is that they combine theory and applications. The math is 
necessary to derive these various estimators and today’s computers can 
now quickly compute them. This is a nice marriage of theory and 
application. 
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